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Abstract

Vision-language models (VLMs) are increasingly used to evaluate multimodal content, including
presentation slides, yet their slide-specific understanding remains underexplored despite their
growing role as critics in agentic, model-forward pipelines. We introduce VLM-SlideEval, an
evaluation framework that probes VLMs along three axes: (1) element-level extraction from
slide images aligned to ground truth; (2) robustness to controlled perturbations in geometry,
style, and text; and (3) higher-level comprehension, such as recovering a deck’s narrative order
from shuffled slides. Using publicly available decks from Zenod(ﬂ we standardize ground-truth
element metadata from PowerPoint XML and live renderings into a unified, verifiable schema.
Empirically, VLMs underperform on pixel-accurate extraction and show non-trivial agreement,
fidelity, and consistency under controlled perturbations, while performing better on single-slide
content understanding; however, they do not reliably capture narrative structure across slides.
These results highlight the limits of current VLMs for slide evaluation and motivate calibrated,
critic-in-the-loop evaluators that drive iterative refinement and selection in agentic pipelines.

1 Introduction

Presentation slides are a primary vehicle for conveying structured ideas across domains ranging
from education to scientific communication to corporate decision-making. Automatic evaluation of
slide quality and content understanding is an emerging and pronounced need, particularly in light of
advances in agentic, model-forward slide generation [ 1} 2]. While prior work on document analysis
has focused on optical character recognition (OCR) [3| |4, |5] and XML-based parsing [6], these
approaches are brittle when slides are only available as rendered images, and are limited to low-level
layout information without reasoning about higher-level semantics. In contrast, vision-language
models (VLMs) promise a unified mechanism for parsing slide content directly from images while
also supporting tasks that require semantic or narrative comprehension.

Despite the promise, it remains unclear to what extent current VLMs truly comprehend presentation
slides. On one hand, VLMs may struggle with precise pixel-level tasks such as identifying bounding
boxes, font attributes, or alignment, since they may not have been directly trained on raw presentation
rendering pipelines or large scale OCR data of slide presentations. On the other hand, VLMs may
excel at higher-level understanding, such as identifying the role of slide elements (e.g., title, subtitle,
body text), inferring content hierarchy, or reasoning over narrative flow in a deck. Understanding
these trade-offs is crucial for designing reliable and scalable evaluation pipelines that utilize VLMs.

We introduce VLM-SlideEval as a first-class critic in agentic, model-forward pipelines and sys-
tematically probe VLM slide comprehension. Our contributions are threefold. First, we curate a
diverse dataset of PowerPoint decks and extract ground-truth geometry, style, and text via a pipeline
combining PowerPoint XML with rasterized renders. Second, we design protocols for low-level
fidelity and structured comprehension, including element-wise Hungarian alignment and refinement-
relevant probes of judge reliability (variance, sensitivity) and robustness via controlled perturbations

1htt:ps ://zenodo . org; HF viewer: https://huggingface.co/datasets/Forceless/Zenodo10K/viewer/default/pptx
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Figure 1: Evaluation Task Examples: Top: From an original slide (A), we parse a simplified schema JSON
(Table[I) (B), reconstruct a normalized slide (C; blue dashed boxes show theme-embedded content omitted
by the schema). A VLM predicts the schema from the re-rendered slide (D), and we score accuracy. Bottom:
We subsample 100 decks, retain slides with > 3 visible elements (234 slides total), and apply perturbations to
geometry, text, and style with severity s € [0, 1] (larger s means stronger changes; details in ‘ Perturbed
slides are then used for VLM quality evaluation and sensitivity analyses (%).

to geometry, style, and text. Third, we extend evaluation to deck-level narrative by asking VLMs to
reorder shuffled slides, assessing coherence.

Applying VLM-SlideEval, we surface clear limits and strengths. VLMs struggle with pixel-accurate
extraction and show behavioral divergence under controlled perturbations, yet they competently
extract structured content on single slides while remaining unreliable for deck-level narrative. These
findings caution against over-reliance on current VLMs for fine-grained slide evaluation and motivate
more calibrated critic-in-the-loop refinement and selection gates for agentic pipelines.

2 Related Work

Calibrated VLM evaluators are increasingly critical in agentic, model-forward pipelines: they guide
candidate selection, drive iterative refinement at inference time, and even supply reward signals for
training. Recent work shows verifier-guided decoding that improves performance without weight
updates [7]], generalist multimodal judges used both as LMM-as-a-Judge and as reward models [§]],
actor-critic loops that critique and correct reasoning [9], and refinement-centric benchmarks plus stan-
dardization frameworks that emphasize granular measurement [[10L |11f]. Concurrently, Image2Struct
benchmarks VLM image reconstruction on webpages, LaTex, and musical scores [[12]]. This motivates
a slide-native, verifiable evaluator that produces actionable signals at pixel, element, and deck levels.

Yet VLM evaluation remains challenging. Open-ended judging often relies on incomplete visual
context and fuzzy rubrics, yielding inconsistent scores [13]], while models hallucinate and make
perceptual errors in visually grounded reasoning [[14]]. Under controlled manipulations and counter-
factuals, VLMs may inject priors unsupported by pixels and show limited sensitivity to fine-grained
changes [15,/16]. Robustness studies further find text corruptions especially damaging, lightweight
adapters sometimes rivaling full fine-tuning, and broader axes (fairness, toxicity, multilinguality)
underexplored [17}18]].

Slide presentations sit within multimodal document understanding, where structured parsing under-
pins both comprehension and authoring. Prior work has explored language-driven manipulation of
slide objects (not pixels) for faster, faithful editing [[19], OCR-free pretraining for screenshots and
Ul/text layouts that improves element-level parsing [20], and automatic extraction of deck structure
for role identification and accessibility [21]. In parallel, systems that generate slides from long-form
documents highlight the need for scalable, slide-specific evaluation (2} [22].

Unlike work that omits a slide-native evaluator, relies on QA proxies, or focuses robustness on
charts/Uls, VLM-SlideEval provides a slide-specific framework that couples pixel-accurate alignment
to PPT-native ground truth with slide-relevant perturbations and deck ordering, positioning the
evaluator as a critic for agentic pipelines.

3 Method

Data Source. We sample 100 English-dominant (> 70% by langid [23]]) .pptx decks from
ZenodolOK (legacy .ppt excluded), totaling 1,948 slides, with CC-BY 4.0 license (Summary
statistics in Appendix [A] Table 2).
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Figure 2: Parsed-only (solid) vs. e2e (hatched) with coverage (i.e., fraction of ground truth instances evaluated
for the metric; lines). 03/gpt-5 lead on Matching F1 (0.71-0.72) and Text Content F1 (0.76-0.78); 03 best in
geometry (1-IoU 0.55). Font Family Accuracy is low overall (max 0.42). More results in Fig. m Appendix@

Ground Truth Element geometry, content, and style are extracted from PowerPoint XML and
post-layout rendering. We parse static XML and then query the COM (Component Object Model)
API after a layout pass to recover effective font metrics and tight text bounds (mitigating AutoFit and
container/tight-box discrepancies). Elements are stored in a standardized schema with explicit units
(Appendix [A] Table T)).

VLM Parsing & GT Matching. Slides are rasterized to PNG and sent with a fixed 960 x 540px
coordinate frame; we test five VLMs (via Azure) to return JSON validated against our schema (invalid
JSON counts as a parse failure). Each slide is run (/N = 3) times (low temperature), and metrics are
reported per-run and pooled. Predictions are aligned to GT via Hungarian matching (c¢f. [24, 25|
26, 27, [28]]) with a blended cost (1-IoU, center/size difference; text adds content distance) and an
acceptance gate; details in Appendix[C]

Perturbation Synthesis. Seeds. From the same 100 decks we manually select slides well-preserved
by the schema and with at least a minimal complexity, > 3 visible text elements, yielding 234
seeds; the reconstructed slide serves as the clean baseline. Severity knobs. We generate controlled
degradations along geometry, text, and style, parameterized by a single severity s € {0,0.1,...,1.0}.
Magnitudes (e.g., pixel offsets, font-size factors) and event probabilities (e.g., drop/insert text
boxes) increase monotonically with s; randomness is seeded per (slide, axis, s). Exports use a
Node.js-based PPTX builder and headless rendering. From the 7,722 original+perturbed slides in
total (hyperparameters in App. D), we subsample up to 50 slides per severity per axis for evaluation.

Manipulation Check. We assess whether increasing severity s € [0, 1] yields orderly and propor-
tional degradation using (i) adjacent POA (POA,g; := the fraction of consecutive severity steps where
y* does not decrease - and (ii) the mean absolute calibration error (MACE) to the identity y* = s,
on the normalized [0, 1] scale. Empirically, POA is high (5-pt ~ 0.95; 100-pt ~ 0.80) with moderate
calibration (overall MACE = 0.34).

Analysis & Measures We evaluate: (i) parseability (schema-valid JSON rate); (ii) end-to-end (e2e)
and parsed-only extraction quality on matched elements (geometry, content, style); (iii) narrative
ordering (deck reordering; Kendall’s 7, Spearman’s p); and (iv) perturbation sensitivity - R?, POA
and Spearman(severity, y*) - comparing different evaluator scales and models. We report bootstrap
95% CIs where appropriate. Full metric definitions and evaluator prompts appear in Appendix [E]

4 Results

‘We benchmark five VLMs (Azure API) on three main tasks: 1) element-level extraction from slides,
2) behavior under controlled perturbations, and 3) narrative understanding via slide re-ordering.

Slide Parseability. Parse success declines with slide complexity for GPT-4.1 (about 93% for simple
slides with < 8 elements, 72.1% for (8-16], 32.8% for (16-32], and 18.2% for > 32 elements).
GPT-40 follows a similar trend but with an earlier decline: about 88.0% for < 8, 57.6% for (8-16],
45.8% for (16-32], with a small (noisy) uptick to 66.7% at > 32 (N = 66). In contrast, 03 and the
GPT-5 variants remain effectively at ceiling across all bins (99.5%+). See Fig. @

Element Prediction Accuracy. Across headline metrics (Fig. |Z[), 03 and the GPT-5 variants lead
under e2e. Matching F1: Parsed — e2e performance drops (A = 0.12 for GPT-4.1 and GPT-40), with
03 achieving the highest e2e F1 score (0.72), followed by GPT-5 (0.71-0.72), vs. GPT-4.1 (0.59) and
GPT-40 (0.44). Text Content FI: 03 0.78 (best), GPT-5 0.76, GPT-4.1/GPT-40 0.69/0.63. Geometry
(1-IoU; lower better): 03 (best, 0.55), GPT-5 (0.56), GPT-4.1 (0.57), GPT-40 (worst, 0.65). E2e
coverage is limited, especially for GPT-40 (0.33) and GPT-4.1 (0.54) vs the rest (0.74-0.78) Styling
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Figure 3: Evaluation results of model behavior under controlled perturbations.

(Font Family Acc.): overall low (0.17-0.42), with GPT-5-high highest (0.42) and GPT-40 lowest
(0.17). Detailed metrics and parsed-only comparisons appear in Table [ and Fig.[7] (App. §[F2).

Behavior Under Controlled Perturbations - Scale correspondence. Within each model, an isotonic
link maps 5-point scores to 100-point scores with high fidelity: R? € [0.85,0.89] across models
(p = 0.001), with GPT-4.1 the tightest (RMSE = 0.075) and others close (e.g., GPT-5-high 0.083)
on the normalized degradation scale y* € [0, 1]. This establishes that the two scales are largely
monotone reparameterizations. However, a monotone mapping does not imply identical behavior
under controlled severity shifts: coarse 5-point scores may reduce quantization jitter and improve
within-slide ordering, whereas 100-point scores may expose finer variation that can either reflect
genuine sensitivity or add noise. We therefore examine explicit scale x dimension trade-offs below.

Scalexdimension trade-offs. We quantify internal consistency as POA,q and fidelity as
Spearman(severity, y*). We find that for geometry and style, moving from 5-pt to 100-pt yields
no material fidelity gain (bootstrap Cls overlap across models) but reduces POA,q;, as implied by
the flat frontiers (e.g., [0.87,0.95] — [0.62,0.73] (geometry); [0.88,0.98] — [0.63,0.81] (style))
(Fig.[3d). Thus a coarser scale is preferable for stability in these dimensions. In contrast, for text,
100-pt increases fidelity substantially (e.g., GPT-5-high 0.51 — 0.75; GPT-5-minimal 0.52 — 0.76)
while lowering POA,qj (1.00 — [0.88,0.92)), revealing a consistency-fidelity trade-off.

Model interchangeability. Models diverge most on text (Fig.[3b). Even the most convergent text pair
(GPT-5-high vs. GPT-5-minimal) attains only p ~ 0.55 (mean of per-severity Spearman), whereas
geometry/style pairs frequently exceed [0.80,0.90]. Notably, the most divergent geometry pair
(e.g., GPT-40 vs. 03) still shows higher agreement (p ~ 0.78) than the most convergent text pair,
underscoring that text quality is the most divergent axis for cross-model agreement.

Narrative in Slide Deck. Overall (Figure[§)), the models exhibit difficulty in accurately predicting
slide order, with Kendall’s 7 € [0.04, 0.12], Spearman’s p € [0.05, 0.13], and Exact Match scores
s € [0.10, 0.17]) only marginally outperforming random guessing, yet remaining below the theoretical
upper bound of 1.0. This suggests that the models may struggle to comprehend and reason through
the narrative flow of a presentation. Among them, GPT-4.1 delivered the strongest performance
([0.04,0.07] point of improvement) over GPT-5-minimal (Details in Appendix .

5 Conclusion

We present VLM-SlideEval, a framework for evaluating slide element extraction, robustness to
controlled perturbations, and narrative reordering on a curated PPTX corpus with ground truth.
Newer VLMs (03, GPT-5) outperform GPT-4.1/GPT-40, yet all struggle with pixel-accurate style
(e.g., fonts) and cross-slide narrative coherence, and under perturbations exhibit a fidelity-consistency
trade-off: geometry/style are comparatively stable, while finer text scales raise sensitivity but reduce
internal score consistency. These findings argue for calibrated, slide-native evaluator in agentic/model-
forward pipelines, using verifiable and accurate signals to gate selection and steer iterative refinement.
Limitations include public PPTX, seeded perturbations, the suite of VLMs evaluated, as well as the
simplified schema used for parsing slides; future work spans broader corpora, richer narrative probes,
stronger verifiable checks, and judge calibration.
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A Ground Truth Extraction Details

Ground truth elements are obtained by parsing the PowerPoint XML specification and cross-checking
against a PNG export of the same slides. Each element type (text, rect, line, image, table) is
represented in a unified schema with pixel-based geometry and absolute units for fonts and strokes
(the full extraction schema is shown in Table[T|below).

Field(s) Applies to Unit / Notes

w,h slide px; fixed at 960x 540

X,y, W, h rect, text, image, table  px; top-left anchor

x1,y1, x2,y2 line pXx; line endpoints

rx rect pX; corner radius

strokeWidth rect, line points (pt); absolute width

font.size text pt; absolute font size

font.style text categorical; bold, italic, underscore

color fields text, slide, line, rect normalized hex (#RRGGBB)

align text categorical; left/center/right/justify/distributed

Table 1: Schema of extracted ground truth fields (excerpt). See Appendix for full details.

We normalized the coordinates to the fixed slide size 960x540px, with its origin at the top-left corner.
For styling information, font sizes are reported in points, while color values are normalized into
#RRGGBB format. This enables precise cross-comparison between extracted ground truth and
predictions returned by vision-language models (see Sec. [3). The summary statistics of ground truth
element extraction can be found in Table 2]

B Predicted Extraction Prompt

[System Messagel

Analyze the location, size, and styling information of elements in the slide.

The size of the slide is: {TARGET_W} (w) x {TARGET_H} (h) pixels. The screenshot of the slide
was taken at DPI = 72.

Top-left of the slide is (0,0), +x rightward, +y downward.

All geometry fields are integers in pixels, unless noted otherwise.

Return a JSON object with the following top-level fields for the single slide:

{ size, background, texts:[], rects:[], lines:[], images:[], tables:[] }.
Include every required field exactly as specified.

{ Extraction Specification Information: Table|l| Content Here}

[User Message]
{"type": "image_url", "image_url": {"url": "<base64_thumbnail>", "detail": "auto"1}}

Figure 4: Prompt used for structured extractions from VLMs for a single slide image.

We use a single-slide prompt that (i) fixes the slide coordinate frame at 960x540px with origin at
the top-left; (ii) specifies units per field (pixels for geometry, points for fonts and strokes, hex for
colors); and (iii) enumerates the required output schema (size, background, texts, rects, lines, images,
tables) with field-level guidance (e.g., X,y are the top-left of the element bbox; lines use x1,y1,x2,y2;
rectangle corner radius is rx). The system message instructs the VLM to return a strict JSON object
for the single image provided. A compact reference table in the prompt reiterates allowed values (e.g.,
text align € {left, center, right, justify, distributed}) and clarifies that font and stroke widths are in
points (absolute), while all positions and sizes are in pixels. The slide image is passed inline as a



Per deck Per slide Total

Category Mean SD Min Med Max Mean SD Min Med Max Sum
Num. of slides 19.48 11.54 1 18.0 46 — — — — — 1948
All elements 119.01  142.07 1 93.0 1183 6.11 9.03 0 4.0 153 11901
By type
Text 63.40  58.40 0 490 314 325 334 0 3.0 69 6340
Rect 1544  63.66 0 2.5 622 079 5.28 0 0.0 93 1544
Line 5.64 18.74 0 0.0 167 029 2.12 0 0.0 49 564
Image 33.71 33.50 0 280 172 1.73  2.54 0 1.0 44 3371
Table 0.82 4.09 0 0.0 40 0.04 0.35 0 0.0 11 82

Table 2: Ground-truth extraction summary across 100 decks and 1,948 slides. Per-deck statistics are
computed across decks; per-slide statistics across slides.

base64 PNG. We enforce structured output via the API’s JSON schema mode and validate responses
with Pydantic; invalid JSON or schema mismatches are marked as parse failures.

Algorithm 1 Hungarian Matching with Blended Geometry+Content Cost and Threshold Gate

Input: G = {g;};2,, P = {Pj}?:l

Params: slide size (W, H); weights («, 3,7, 0); blended acceptance threshold 7 € [0, 1]
Accessors: box(e)— (z,y, w, h); sim(g,p) € [0, 1] if available (else set §=0)

Defs:

IOU(CL, b) _ area(anb)

area(a)+area(b)—area(anb)

deenter(a, b) = % where c(+) is box center

size_rel(a,b) = %( ‘wa_wb‘) 4 el )

max(g,wq max(e,hq)

A Al oy

8: Construct C' € R™*"
9: fori =1tomdo
10: for j =1tondo

11: a<box(g;), b<box(p;)

12: Cion1 —ToU(a,b); Ceenter ¢ deenter(a, b);  Csize < size_rel(a, b)
13: Ceont = 1 — sim(g;, p;) if content available else 0

14: Cij < QCioy + 5Ccenter + YCsize + 6Ccont

15: end for

16: end for

17: Compute optimal assignment A C {1..m} x {1..n} by Hungarian on C

18: Threshold gate and bookkeeping

19: M <+ &; matchedG <+ &; matchedP < &
20: for each (i, j) € Ado

21: if Cij <7 then

22: M<—MUA{(i,7)}; matchedG <—matchedG U {i}; matchedP - matchedP U {j}
23: end if
24: end for

25: Output: matches ‘M’, false positives ‘P \ matchedP’, false negatives ‘G \ matchedG’

C Prediction-to-Ground Truth Matching Algorithm

Let G = {g;} denote the set of ground truth elements and P = {p;} the predicted elements. Each
candidate match (g, p;) (c;j € C' € RIGIXIPl) we define a blended cost ¢;; = a(1 — IoU(g;,p;)) +
B deenter (9i, p;) + 7 size_rel(gi, pj) + 0 (1 — sim(g;, p;)), where IoU is the box overlap, deeneer is
normalized Euclidean center distance, size_rel is relative size drift, and sim is a content similarity
score (e.g., normalized text similarity). We solve a minimum-cost bipartite matching with the



Hungarian algorithm [24, 26] on C' = [c;;]. Finally, we apply a lightweight sanity check: a matched
pair (i,j) is accepted iff its blended cost is below a threshold 7 (i.e., cij < T); otherwise it
is discarded, yielding an unmatched ground-truth (FN) and prediction (FP). Pseudo code of this
procedure can be found in Algorithm I]

This formulation generalizes naturally to other modalities; only the similarity term sim(-) is type-
dependent. For example, table elements may use cell-value overlap, and images may use caption,
color histogram, and object-scene similarity.

D Perturbation Operators and Hyperparameters

Notation. We perturb a slide’s element list £ with a single strength knob s € [0, 1]. When s = 0 the
transform is a no-op (we return a deep copy). All probabilities and noise scales below are monotone
in s, and all randomness is seeded for reproducibility.

Geometry (layout/alignment). We act on “box-like” elements with geometry (z,y,w, h) (text,
image, table, rect, chart). For each eligible element (sampled with per-element probability mgeo;
default = 1.0):

* Translation: (2/,y') = (z + A, y+ A,) with A, ~ N(0,02), Ay ~ N(0,07),
0z(s) =(0.04+0.16s) - W, o,(s) =(0.04+0.165) - H,
where (W, H) is slide size (960 x 540px).
* Scaling: (w',h') = (w - 1w, h-np), with g3 ~ exp(N (0, afog)) and o10g(s) = 0.12 4 0.55 s.
* Extreme size (optional): with probability peyt(s) = 0.20 s, additionally multiply (w’, k") by
r ~ Uniform(0.15,0.50) or Uniform(1.5,10).

* Reposition (optional): with probability p,ep(s) = 0.10 s, sample a fresh (2, y’) uniformly over
valid canvas positions (respecting current size).

* Collapse (optional): with probability peo1(s) = 0.08 s, set one dimension to Uniform(1, 3) px
(skinny or flat).

* Bounds: clamp to [0, W — w’] x [0, H — /] unless allow_clipping.

Text Content. We operate on text elements; non-text are passed through. For each text box (sampled
with per-element probability 7y ; default = 1.0):

* Character-level noise with per-character rate pehar(S) = Pmin + (Pmax — Pmin) S» Where ppin =
0.02, pmax = 0.25. For each affected character, apply one of {substitute, delete, insert, adjacent-
swap} with weights (0.50,0.20,0.15,0.15). Substitutions/insertions prefer keyboard-neighbor
letters; case preserved.

* Numeric preservation (optional): after noise, restore the original numeric runs (\d+(\.\d+)?)
in textual order to limit semantic drift on quantities.

* Drop boxes (optional): with probability p4,op(s) = 0.18 s, remove the entire text box.

e Insert boxes (optional): with probability pins(s) = 0.35s, insert n €
{1,...,min(max_inserts, 1 4+ |3s])} irrelevant text boxes. Each insertion samples ge-
ometry fractions w/W ~ U(0.15, 0.35 + 0.35s), h/H ~ U(0.08, 0.22 4 0.28s), with uniform
valid (z,y). Text is drawn from a small pool (e.g., “lorem ipsum”, “TODO: revise”), and default
font attributes are assigned (size scales with s; emphasis toggles with small s-scaled probabilities).

Style (typography & color). We act on text elements (per-element probability 7y ; default = 1.0).
Let f denote a font object with fields {name, size, bold, italic, underline, color}.

* Family switch: with probability pr.,(s) = 0.20 + 0.60 s, replace name by a random choice from
a fixed pool excluding the current family.

* Size jitter: size’ = clip(g 19 (size - exp(N(0,02)))) with oy, (s) = 0.45s. With probability
Dszext () = 0.25 s, additionally multiply by U(0.12, 3.8) to produce tiny/huge outliers.

* Emphasis toggles: independently flip {bold, italic, underline} with probability piog(s) =
0.20 s.

* Color: with probability pinj(s) = 0.30s, inject an incongruent palette color (e.g., #FF0000,
#FFFF00, #00FFFF, ...). Otherwise jitter the current color in HLS: Ah ~ U(—30°,30°) s,



Al ~ U(-0.25,0.25) s, As ~ U(—0.20,0.20) s. With probability piowc(s) = 0.25s, move
toward the background color by ¢’ = (1 — a)c + a cpg With a = 0.25 + 0.65 s.
* Background: with probability prq(s) = 0.20 s, jitter the slide background color as above.

E Additional Details for Analysis & Measures
E.1 Slide Parseability

Definition. A slide is counted as parsed if the model returns a JSON object that validates against our
strict schema (fields, types, units) using Pydantic. Responses that are not valid JSON or violate the
schema are marked as failures. Parseability is independent of matching quality (later we report on
both the end-to-end - including parse failure cases where they would count towards the denominators
of the downstream performance metrics - as well as the parsed-only - excluding parse failure cases
from analysis; see Fig. [Z]and Fig. [7 for the relevant results).

Complexity. We use GT scene complexity c as the total number of ground truth elements on a slide
(sum over text, image, table, line, rect, table).

Reliability curve by complexity. Let { By} be K quantile bins of ¢. For each bin By we report

—~ 1
Pr(success | c€ By) = B Z W {parsed, },
| k| i€ By,
with a 95% bootstrap confidence interval via percentile or BCa intervals.

E.2 Maetric Definitions

To investigate the VLM slide comprehension accuracy, we measure a suite of metrics encompassing
a diverse set of elements for the three dimensions of quality, as detailed below.

Matching counts & PRF1. For each family and overall (micro), precision P = %, recall
TP 2PR
R = m,andFl = PIR"

Geometry terms (interpretable). For boxes we report: 1 — IoU; center distance d°°"***; relative
size r'7¢; for images, aspect-ratio error r®"; for rectangles, radius error r™; for lines, relative length

error r'°" and angular error 728, All terms are in [0, 1] after normalization. Lower is better.

Content similarity. Text strings are normalized by lowercasing, replacing “&—and”, stripping
punctuation, and collapsing whitespace. We compute s = SequenceMatcher (pred, to) €
[0, 1] and also report 1 — s°8tent where an error term is desired. (Embedding-based similarity is
possible but not used in our primary results.)

Style. We measure color differences using CIEDE2000 (A Eyo) computed in CIE L*a*b* space
after sSRGB—Lab conversion (D65; k;, = kc = kg = 1). Lower is better. Rule-of-thumb:
AFEy <0.5 imperceptible, 0.5—1 barely perceptible, 1—2 small but visible, 2—3.5 clearly noticeable
under typical viewing. We evaluate: (i) slide background vs. GT; (ii) per element type—font color
(text), fill and stroke (rect), and stroke (1ine). For numeric style fields we report absolute errors
in native units: font size (pt) and stroke width (pt). For booleans we report mismatch rates (0/1): bold,
italic, underline (for text). All statistics are summarized overall and per type using means, standard
deviations, and counts; micro-averaged PRF1 is computed from summed TP/FP/FN.

Aggregation. We micro-average PRF1 by summing TP/FP/FN over all slides and runs. For scalar
errors we report {mean, stdev, n} over all matched pairs (overall and by type). Where noted, we
compute bootstrap 95% Cls (2,000 resamples). Deck-level summaries aggregate per slide, then pool
across decks (pooled mean/stdev with sample-size weights).

Units & coordinate frame. All geometry is in a fixed 960x540px slide frame, with stroke width

and font size in points. The rasterization is for screenshots only and does not alter the target coordinate
system.
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[System Messagel
[Role]
You score the {DIMENSION} of a PowerPoint slide.

[Scale]

Return ONE integer on the scale {SCALE_MIN}..{SCALE_MAX} (inclusive).
Anchors:

- Min ({SCALE_MIN}): "{LOW_LABEL}".

{OPTIONAL_MID}- Mid ({SCALE_MID}): "{MID_LABEL}".

- Max ({SCALE_MAX}): "{HIGH_LABEL}".

[How to judgel
Consider only:
{CRITERIA_BULLETS}

[User Messagel

{"type": "image_url", "image_url": {"url": "<base64_thumbnail>", "detail": "auto"}}

Figure 5: Prompt template used by VLM evaluators on perturbed slides.

E.3 Evaluator Prompts

The prompts used by VLMs for assessing the quality of perturbed slides along text, geometry, and
style dimensions are instantiated using a common prompt template (Fig.[5). For dimension, we use
{“text quality”, “layout geometry”, “style”}; we provide two scale set points {(1,5), (1,100)} and
corresponding mid-point as the mean of the end-points, and labels as {‘““very poor”, “acceptable”,

“excellent”}. The how to judge constraints in each dimension are shown in Table [3|below:

Text quality

Layout geometry

Style

* Clarity and plain language

* Grammar/spelling

* Bullet length (prefer one line)
 Concision (avoid fluff)

* Alignment to grid/edges/base-
lines

* Consistent spacing and mar-
gins

* Balance and visual hierarchy

* Element sizing matches im-
portance

* Font family consistency and
readability

* Font size appropriate for
viewing distance

* Contrast and color harmony

* Consistent emphasis (bold/i-
talic/underline sparingly)

Table 3: How to judge constraints used by evaluators.

F Detailed Results

F.1 Slide Parsing Success Rate Conditioned on Scene Complexity

Parseability vs. complexity. Figure[6] visualizes trends across complexity bins; the per-bin summaries
are:

» GPT-5-high is essentially at ceiling across all complexity bins: five bins are at 100% and the
remaining two are 99.8%-99.9%.

* GPT-5-minimal is likewise near-ceiling: 99.7%-100% in all but one bin; the lowest bin is 99.5%
(16-32).

* 03 remains at or near ceiling throughout, with 99.7%-100% across all bins.

* GPT-4.1 shows clear sensitivity to complexity: 95.5% (0-1), 93.7% (1-2), 92.8% (2-4), 91.6%
(4-8), then drops to 72.1% (8-16), 32.8% (16-32), and 18.2% (32-c0).

* GPT-40 underperforms GPT-4. 1 in most bins as complexity grows: 92.7% (0,1] 95.4% (1,2],
89.1% (2,4],81.4% (4, 8], 57.6% (8, 16], 45.8% (16, 32]; the uptick to 66.7% in (32, oo] reflects
small-sample volatility (N = 66).
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Parse Success vs. Complexity (Empirical)
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Figure 6: Parse success versus scene complexity (elements per slide) across VLMs. Complexity bins: (0, 1],
(1,2], (2,4], (4, 8], (8,16], (16, 32], (32, co]. GPT-5 and 03 remain near ceiling across bins, while GPT-4 series
degrades with complexity. Estimates in the rightmost bin use small samples (N = 66 per model).

Small sample sizes in the extreme tail (32, co], N = 66 per model) limit certainty there; the overall
pattern is near-perfect parseability for the GPT-5 and 03 models, with sharp degradation for the
GPT-4 series as complexity increases.

F.2 Extraction Performance

Fig.[7] summarizes extraction accuracy and geometry error with Parsed Only vs. End-to-end bars
and coverage lines; Table [ lists per-model metrics, showing e2e (parsed-only) in each cell with best
e2e bolded. Overall, 03 and GPT-5-{minimal,high} lead across Fl/accuracy and geometry, while
GPT-4.1/GPT-40 degrade more under e2e, consistent with lower coverage.

mmm Parsed Only w7 End-to-end —e— Coverage (Parsed Only) ~ ~#- Coverage (End-to-end)

Any-style F1 Font Size MAE (pt) 10 Font Group Acc (Micro) AEOQO (Text Color Error) o

coverage

NP S C R SR O
WO '0“(\ DQQ‘A ()?‘

Image Aspect Ratio Error 1

4 068 06 -06 %

. 3 8
.4 3 -043 04 -043
2 l I l I -0.2 02 e 2 - 0.2
.04 0.0 0.0 L—I—l—.—o.o

R NP W C TN S () O @ D) N0 NP S C TN G Y
B % R o 1Y % . o B % . 0 B %
R xﬁm\%\“\@ S ‘h'“\%\“‘“\ s vsm\‘)«{\@t“ R

SR - o &

*® ® ®

S @

OR .
ng(’ PR o

o
Figure 7: Bars show Parsed Only (solid) vs. End-to-end (hatched); lines (right axis) show coverage (fraction
of ground-truth instances evaluated per metric). Styling (higher is better): Any-style F1 is moderate overall,
with GPT-4.1 at 0.77 (best) and GPT-40 at 0.55 (worst); parsed-only boosts are pronounced for the 4-series (e.g.,
0.89 for GPT-4.1, 0.67 for GPT-40). Fonts: font group accuracy is near-perfect for GPT-5-{minimal,high} and
03 (>0.98) but lower for GPT-4.1/GPT-40 (= 0.72/0.59); font family accuracy is substantially lower across
models [0.17,0.42]. Font size: MAE (pt; lower is better) ranges [5.93, 10.18] with GPT-4o best. Color (lower is
better): text A Foo spans [1.46, 3.37] (03 best, GPT-4.1 worst) and contrast |A| shift spans [0.26, 2.47] (03 best,
GPT-4.1 worst). Geometry (lower is better): 1 — IoU is best for 03 (0.55) and worst for GPT-40 (0.65); center
error is [0.04, 0.09], size error [0.27, 0.37], and image aspect-ratio error [0.15,0.20]. End-to-end coverage is
substantially lower for the 4-series than for 03/GPT-5.

F.3 Slide Deck Narrative Order Performance
To assess narrative comprehension, we examine how effectively the VLM reconstructs the original
sequence of slides from a randomly shuffled deck (Figure([8). Each deck is segmented into individual

slide representations, which are then randomly reordered and input into the model along with a
prompt instructing it to restore the correct order. The model’s predicted sequence is evaluated against
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Metric GPT-40 GPT4.1 o3 GPT-5-minimal GPT-5-high

Element Matching F1 0.44 (0.54) 0.59(0.71) 0.72(0.72) 0.71 (0.71) 0.72 (0.72)
Geometry (micro; lower is better)

1 —1IoU 0.65 0.57 0.55 0.56 0.56

Center error (% diag) 0.09 0.04 0.04 0.04 0.04

Size error (relative) 0.37 0.27 0.31 0.32 0.32

Image AR error 0.20 0.18 0.18 0.15 0.15
Content (micro; higher is better)

Text Content F1 0.63 (0.69) 0.69 (0.73) 0.78 (0.78)  0.76 (0.76) 0.76 (0.76)

Style (micro; higher is better for style F1 and font accuracies; lower is better for color shifts)

Any-style F1 0.55(0.67) 0.77 (0.89) 0.74(0.74) 0.73 (0.73) 0.73 (0.73)

Font Family Acc (micro) 0.17 (0.27) 0.33(0.45) 0.32(0.32) 0.41 (0.41) 0.42 (0.42)

Font Group Acc (micro)  0.59 (0.95) 0.72(0.98) 0.98 (0.98) 0.98 (0.98) 0.98 (0.98)

Font size MAE (pt) 5.93 10.18 6.22 8.92 8.97

Text color A FEpg 2.27 3.37 1.46 2.57 2.55

Contrast |A| shift 0.63 2.47 0.26 0.75 0.77

Table 4: Extraction accuracy and geometry quality by model. Each cell shows end-fo-end and (parsed-only)
values, when applicable. Higher is better for F1/accuracy; lower is better for error metrics. Best model metric is
boldfaced.

the ground truth using Kendall’s 7, Spearman’s p, and normalized exact match metrics. We report the
mean and standard deviation across all decks.

As a preliminary step, we verify whether the models can generate output sequences that match the
full length of the original presentations. For instance, if a presentation contains 23 slides, the model
should produce an ordered list of 23 elements. According to Figure 6 (left), GPT-5 high and 03
successfully generate nearly complete sequences, whereas other models struggle to even identify the
correct number of slides present in the input.

Focusing on presentations with correctly predicted lengths, GPT-5-minimal and GPT-4.1 demonstrate
relatively strong performance in ordering accuracy, as measured by Kendall’s 7 and Spearman’s p,
particularly outperforming o3. However, across the board, all models exhibit limited capability in
narrative ordering, with scores below 0.15. This indicates substantial room for improvement before
approaching the theoretical upper bound of 1.0 across all metrics. While the models appear capable
of interpreting slide content and multimodal layout, they still face significant challenges in reasoning
through the narrative structure.

Output Length Ratio Kendall's Tau Spearman's Rho Exact Match
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Figure 8: Slide Deck Ordering Prediction: 1) Output Length Ratio: GPT-5-high and 03 successfully generate
nearly complete sequences 2) Kendall’s 7 and 3) Spearman’s p: despite overlapping confidence integrals, GPT-5-
minimal and GPT-4.1 show a consistent upward trend among these two measure, indicating potential robustness
that warrants further investigation 4) Exact Match: models exhibit similar performance around 0.14 with GPT-40

being the lowest.
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G Fonts and Font Groups Used in the Analysis

G.1 Canonicalized Font Names and Counts in the Dataset

Table 5] shows the count statistics of different fonts in text elements present in the ground truth slides.

Font Count | Font Count | Font Count
calibri 2183 | arial 1692 | unknown 460
lato 260 | montserrat 203 | roboto 159
open sans 132 | century gothic 105 | oswald 105
helvetica neue 98 | avenir next 97 | garamond 70
verdana 66 | ibm plex sans 65 | corbel 64
georgia 61 | source sans pro 53 | libre franklin 43
tahoma 41 | patrick hand 33 | raleway 32
soechne 31 | dosis 30 | inter 22
times new roman 22 | quattrocento sans 20 | titillium web 20
bahnschrift 16 | barlow 16 | cambria 16
elephant 15 | franklin gothic 14 | nunito 14
gill sans 12 | amatic sc 10 | american typewriter 10
source code pro 10 | ubuntu 9 | ibm plex mono 5
palatino linotype 4 | aptos 3 | handwriting 3
segoe script 3 | bookman old style 2 | menlo 2
playfair display 2 | tenorite 2 | bodoni 1
inconsolata 1 | pacifico 1 | proxima nova 1
segoe ui 1 | Total 6340

Table 5: Frequency of different font families in the ground truth data (sorted descending, row-major)

G.2 Font — Font Group Mapping

# Sans

"arial":"sans","calibri":"

sans","helvetica":"sans","helvetica neue":"sans","segoe ui":"sans","verdana":"sans",

"tahoma":"sans","gill sans":"sans","inter":"sans",'"roboto":"sans","open sans":"sans","lato":"sans",
"montserrat":"sans",'"source sans pro":"sans","libre franklin":"sans","quattrocento sans":"sans",

"ubuntu": won "o wen

sans","barlow":"sans","bahnschrift":"sans","ibm plex sans":"sans","soehne":"sans","dosis":"sans",
"poppins":"sans","raleway":"sans","titillium web":"sans","nunito":"sans","corbel":"sans","candara":"sans",

"century gothic":"sans","avenir":"sans","avenir next":"sans","franklin gothic":"sans","arial rounded mt":"sans",

# Serif

"times new roman'":"serif",'"georgia":"serif","garamond":"serif","cambria":"serif","palatino linotype":"serif",
"bookman old style":"serif","elephant":"serif","merriweather":"serif","playfair display":"serif",
"bodoni":"serif","bodoni mt":"serif","didot":"serif","tinos":"serif","cmr10":"serif","american typewriter":"serif",
# Mono

mono","courier":" "

mono", "consolas

mono", "menlo":"mono","monaco":"mono","inconsolata!

"courier new nen

mono",
"fira mono":"mono","source code pro":'"mono","roboto mono":'"mono","ibm plex mono":'"mono",
# Script / Hand / Display

"comic sans ms":"

script","brush script mt":"script","brush script":"script","amatic sc":"script",

"patrick hand":"script","architects daughter":"script","caveat":"script","pacifico":"script","lobster":"script",
"impact":"display","bebas":"display",

# Others

"roboto slab":"serif",'"carlito":"sans","asana":"serif","tenorite":"sans","aptos":"sans",

"segoe ui emoji":"sans",'"segoe ui symbol":"sans",

G.3 Font Group Frequencies

Table[6]shows the count statistics of different fonts in text elements present in the ground truth slides.
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Font Count | Font Count | Font Count
sans 5503 | other 569 | serif 203

script 47 | mono 18 | Total 6340
Table 6: Frequency of different font groups in the ground truth data (sorted descending, row-major)

H Reproducibility and Safety Checks for Slide Perturbation

* Seeding: All RNG draws use a fixed base seed; per-slide streams can be derived via a deterministic
hash of the slide ID.

* Validity: Geometry is clamped to the canvas (unless explicitly allowed); sizes are lower-bounded
by 1 px. Colors are validated to normalized hex (fRRGGBB) before export.

* No-op at s = 0: We return an unchanged copy when s < 107!2,

* On Monotonicity: Because operations are stochastic, a single draw at s = 1.0 need not strictly
dominate a draw at s < 1, but it does so at expectation (all scales/probabilities are monotone in s).

I Declaration of LLM Usage

We used large language model (LLM) assistants solely for writing and tooling support, including
(i) manuscript/LaTeX editing, phrasing, and formatting, and (ii) non-substantive code assistance in
VS Code (e.g., refactoring, bug fixing, style cleanups, and commenting). All algorithms, evaluation
designs, datasets, metrics, and reported results were specified by the authors; LLM-suggested
text/code was reviewed, verified, and tested by the authors before inclusion. This usage does not
impact the core methodology or conclusions.
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